Application of Optimum-Path Forest Classifier for Synthetic Material Porosity Segmentation

نویسنده

  • Victor H. C. Albuquerque
چکیده

This paper presents a new application and evaluation of the Optimum-Path Forest (OPF) classifier to accomplish synthetic material porosity segmentation and quantification obtained from optical microscopic images. Sample images of a synthetic material were analyzed and the quality of the results was confirmed by human visual analysis. Additionally, the OPF results were compared against two different Support Vector Machines approaches, confirming the OPF superior fast and reliable qualities for this analysis purpose. Thus, the Optimum-Path Forest classier demonstrated to be a valid and adequate tool for microstructure characterization through porosity segmentation and quantification using microscopic images, manly due its fast, efficient and reliable manner. KeywordsOptimum-Path Forest, Synthetic Material Porosity Segmentation, Image Foresting Transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Automatic Microstructural Segmentation of Ferrous Alloy Samples Using Optimum-Path Forest

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work i...

متن کامل

Ensembles of Optimum-Path Forest Classifiers Using Input Data Manipulation and Undersampling

The combination of multiple classifiers was proven to be useful in many applications to improve the classification task and stabilize results. In this paper we used the Optimum-Path Forest (OPF) classifier to investigate input data manipulation techniques in order to use less data from the training set without hampering the classification accuracy. The data undersampling can be useful to speed-...

متن کامل

Design of Pattern Classifiers Using Optimum-Path Forest with Applications in Image Analysis

Current image acquisition and storage technologies have provided large data sets (with millions of samples) for analysis. Samples may be images from an image database, objects extracted from several images, or image pixels. This scenario is very challenging for traditional machine learning and pattern recognition techniques, which need to be more efficient and effective in large data sets. This...

متن کامل

Land Use Classification Using Optimum-Path Forest

It was introduced in this paper the Optimum-Path Forest for land use classification aiming a better environmental management, using images obtained from CBERS 2B CCD satellite covering the area of the Rio das Pedras watershed, Itatinga City, São Paulo State, Brazil. We also compared the Optimum-Path Forest algorithm with the well known supervised classifiers: Artificial Neural Networks using Mu...

متن کامل

Supervised Pattern Classification Using Optimum-Path Forest

We present a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), and describe one of its classifiers developed for the supervised learning case. This classifier does not require parameters and can handle some overlapping among multiple classes with arbitrary shapes. The method reduces the pattern recognition problem into the computation of an optimum-path forest in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010